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“Metric-Free Individual Fairness in Online Learning”
Joint with Christopher Jung and Steven Wu. NeurlPS 2020 Oral.

“Individually Fair Learning with One-Sided Feedback”
Joint with Aaron Roth. ICML 2023.
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High-Level Plan

@ Re-examine commonly made assumptions regarding:
» The level on which fairness is defined
» The data generation process
» The feedback model
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Running Example
Example: Loan Approvals

For incoming loan applicants, predict whether each individual will repay or
default on payments.

on e

Loan - or
policy ffﬂ
AR

(income, education, age,
repayment history,...)
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Focus #1: Group Fairness Offers Weak Guarantees

The bulk of research in algorithmic fairness considers definitions that only bind on
a group level.

Statistical fairness
@ Select a statistic (accuracy, FPR/FNR, PPV,...).
@ Define a set of groups in the population.

o (Approximately) equalize the statistic across groups.
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@ Advantage: relatively easy to work with.

Focus #1: Group Fairness Offers Weak Guarantees

@ Disadvantage: very weak guarantees for individuals.

Q : accepted individuals

. ®
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. .
Green

JO,
Male

Female

[m]

Figure: Fairness Gerrymandering: A Toy Example [Kearns et al., 2018]
Yahav Bechavod (University of Pennsylvania)
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Focus #2: Standard Statistical Assumptions May Not
Always Apply

The majority of the work in algorithmic fairness operates under statistical data
generation assumptions.

However: in various setting where fairness is a major concern, arriving individuals
may not necessarily follow i.i.d. assumptions, due to, e.g.:

@ Strategic effects (feature modifications based on knowledge/in anticipation of
a specific policy, choosing whether to apply based on the policy in effect).
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Learning in the Presence of Strategic Behavior

Individuals would like to receive 2 B A .2

more favorable assessments *Ii! *; j *. 'n' *

=P Act strategically *I!I . R m. “'1
—Pp- Strategic feature modifications * 'l' rn| 'I' . *

Example: loan approvals

Deployed
policy

Yahav Bechavod (University of Pennsylvania) August 19, 2023



Strategic Feature Modifications

c ) 5 Ways to Improve Your Credit Score Fast © ~
Watch later ~ Share

BOOST Excellent
YOUR ;, S

.
CREDIT SCORE D

FAST! Poor

Watch on (@BYouTube
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Strategic Feature Modifications

Obtain additional credit cards

o Raise your credit limits - . " -
Reduce your debt E HM% E
Increase your income = 4
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OpenSCHUFA

schufa

@ SCHUFA is Germany's leading credit bureau.

@ SCHUFA has 943 million records on 67.7 million natural persons, and 6
million companies. Schufa processes more than 165 million credit checks each
year. Of those, 2.5 million are self-checks by citizens. Schufa employs 900
people (as of 2019). In 2016 Sales amounted to approx. 190 million Euros.
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OpenSCHUFA

OPEN . , ALGORITHM
€in Projext von WATCH und
OpenSCHUFA: The campaign is @ Grimme
over, the problems remain - what iline ngi

NOMINIERT 2019
we expect from SCHUFA and NOMINIERT:207%

Minister Barley

Results - Our demands - Press review - Deutsch Elopenschufa W @openschufa

“We were able to motivate more than 4,000 people to provide us with their
SCHUFA information — very sensitive information that people usually keep to
themselves.”
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Beyond Standard Statistical Assumptions

Arriving individuals may not necessarily follow i.i.d. assumptions:

@ Strategic effects (feature modifications based on knowledge/in anticipation of
a specific policy, choosing whether to apply based on the policy in effect).

o distribution shifts over time (e.g. ability to repay a loan may be affected by
changes to the economy or recent events).

o Adaptivity to previous decisions (e.g. if an individuals receives a loan, that
may affect the ability to repay future loans by this individual or his/her
vicinity).
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Focus #3: Feedback May Not Be Fully Observable

The bulk of the literature on algorithmic fairness operates in either:

@ Batch setting
@ Online setting with full information

o Bandit setting
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Focus #3: Feedback May Not Be Fully Observable

However, in many domains where fairness is a major concern, feedback may arrive
for positively predicted individuals only. Cannot observe counterfactuals.

Loan approvals

°
@ College admissions
@ Hiring for jobs

o

Online advertising

= Batch setting - data could be “skewed” to only include individuals accepted
by past policy. In particular, if not careful, could inherit biases of historical
discriminatory policies.
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Redlining
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One-Sided Feedback

Example: loan approvals — y
" " s \\\"’?‘“““ observable

iy — @<

Deployed
@
(x, ) 'ﬂ'

policy
This is not a bandit setting!
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High-Level Plan

» The level on which fairness is defined
» The data generation process

© Re-examine the assumptions commonly made regarding:
» The feedback model

@ Design efficient algorithms that:

» Offer meaningful guarantees to individuals

» Operate beyond standard statistical assumptions
» Can handle limited feedback

Yahav Bechavod (University of Pennsylvania)
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Outline

Fairness Framework: Metric-Free Individual Fairness via Panels

Individually Fair Online Batch Classification

°
°

@ Reduction to Contextual Combinatorial Semi-Bandit

@ Multi-Criteria No Regret Guarantees for Accuracy, Fairness
°

Oracle-Efficient Algorithm
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Outline

Fairness Framework: Metric-Free Individual Fairness via Panels
Individually Fair Online Batch Classification

°

°

® Reduction to Contextual Combinatorial Semi-Bandit

o Multi-Criteria No Regret Guarantees for Accuracy, Fairness
°

Oracle-Efficient Algorithm
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Individual Fairness

Dwork et al. 2011: “Fairness Through Awareness”
" Similar individuals should be treated similarly.”

|h(x) = h(x)] < d(x,x)
—_—————— ——
Diff. in predictions Distance

h:X —[0,1] "soft” predictor.

Assumption: Access to similarity metric between individuals:

d: X xX —RT
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Challenges in Operationalizing Individual Fairness

Problem: Similarity metric is often unavailable.

@ Unclear where such metric can be found.

@ People have different opinions of who are similarly situated in the context of
specific tasks.

@ Even if an individual has a clear idea of which individuals are similarly
situated, an exact mathematical formula for the metric might be difficult to
enunciate.
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Difficulty of Enunciating a Metric

“What is the exact formula that measures

similarity for loan applicants?”

“Hard to tell...”
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Difficulty of Answering Numerical Queries

“What is the distance between individuals
#5 and #17?”

“Still Difficult for me

to answer exactly.”
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Human Auditor for Fairness Violations

“Can you spot a pair of similar individuals
who were treated very differently?”

“Yes. Individuals #5 and #17.”

Auditor “knows unfairness when he sees it.”

Auditor

Yahav Bechavod (University of Pennsylvania)
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Prior Work on Individual Fairness

o Dwork, Hardt, Pitassi, Reingold, Zemel, 2011: Conceptual introduction of
individual fairness, relying on the availability of a similarity metric.

@ Rothblum and Yona 2018: Assume metric is given, provide generalization
results for accuracy and fairness in batch setting.

@ llvento 2020: Learning the metric via distance and numerical comparison
queries to human arbiters.

@ Kim, Reingold, Rothblum, 2018: Group-based relaxation of individual
fairness, relying on access to an auditor returning unbiased estimates of
distances between pairs of individuals

o Gillen, Jung, Kearns, Roth, 2018: Auditor “knows unfairness when he sees
it". Assume specific parametric form of metric, auditor must report all
violations on a given round.
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Model and Definitions

o X instance space.
o YV ={0,1} label space.
@ H: X — Y hypothesis class.

@ Assume H contains a constant hypothesis —i.e. h such that h(x) = 0 for all
xekX.

@ We allow for convex combinations of hypotheses for the purpose of
randomizing the prediction and denote the simplex of hypotheses by
AH X —[0,1].

@ For each prediction y € Y and true label y € ), there is an associated
misclassification loss, £(y,y) = 1(y # y).

@ We overload notation and write, for m € AH:

Ur(x).y) = (A =7(x)) -y +7(x)- (1 =y) = E [((h(x),y)]

~TT
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Individual Fairness

o We assume that there is a distance function d : X x X — R™ which captures
the distance between individuals in X

Definition (a-fairness violation)

Let « >0and let d: X x X — [0,1]. We say that a policy 7 € A has an
a-fairness violation (or simply “a-violation”) on (x,x’) € X2 with respect to d if

m(x) — w(x") > d(x,x") + a.

where m(x) = Pry.[h(x) = 1].
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Auditor

@ An auditor reports one a-violation if one or more exists.

Definition (Auditor)
Let a > 0. We define a fairness auditor j¢ € J by, Vr € AH, x € Xk,
(x5, %1y e VI if Vii={(x5,%): s £ 1 € [K],

J° (7, %) = 7(%) = 7(%) > di(x, %) +a} £ 0,
(v,v) otherwise

where x = (x},...,%%), & : X x X — [0,1] is auditor j*'s (implicit) distance
function, and v € X is some “default” context.
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Auditor

Individuals 5 and 17 are
being treated unfairly

[r(xs) — m(x17)| > d(xs,%17) +

Or

I don’t see any unfair
treatments here.

(G, MG}

(Features, Predictions) Auditor, Fairness Feedback
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Metric-Free Individual Fairness

Q: Auditors’ preferences may be inconsistent. What if the specified feedback from
the auditor does not obey metric form?

io 0.2 0.2
Y z

0.5

@ In our formulation, d need not necessarily be a metric:
> d doesn’t have to satisfy the triangle inequality.
> The only two requirements on d is that it is always non-negative and
symmetric.

@ Furthermore, we place no parametric assumptions on d.
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How Should We Audit for Unfairness?

So far: single auditor, no metric assumption

However: unlikely that stakeholders would rely on a single auditor regarding
fairness related judgements, especially in high-stakes domains:
@ Human auditors may have implicit biases based on many factors:
background, socio-economic level, education level, etc.
@ A static auditing scheme may risk leaving too much power in the hands of
the same (few) individuals over time.

@ Practically speaking, may be infeasible for the same auditor to examine more
than a certain amount of cases in a specific period of time.
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Our Approach: Dynamic Auditing by Panels

We propose an auditing scheme based on dynamically-selected panels of multiple

it

o Ethicists familiar with the history of redlining
@ Financial experts

Example:

Yahav Bechavod (University of Pennsylvania)
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Handling Inconsistent Judgements

Q: In case judgments of different auditors are inconsistent with each other, how
should we handle disagreements?

Definition ((c, y)-fairness violation)
Let « >0,0<~ <1 meN\{0}. We say that a policy 7 € AH has an
(v, y)-fairness violation on (x,x’) € X2 with respect to d*,...,d™: X2 — [0,1] if

m

Z 1 [m(x) — 7(x") — d'(x,x") > a) > 1.

i=1

1
m
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Auditing by Panels

Definition (Panel)

Let « >0,0<~ <1, meN\{0}. We define a fairness panel J*7 by,
Vi e AH,x € XK,

(x5, e Vi if Vi={(x5,%):s#]I € [KIA i,y itym) € [N
jo(mX) = Vs € [[ym]], (x°, %) e V" } £ 0
(v,v) otherwise

where X := (x',...,X¥), &/ : X x X — [0,1] is auditor j's (implicit) distance

=

function, and v € X is some “default” context. j.

@ Can vary v and algorithmically explore the trade-off.
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Auditing by Panels

There exist two individuals (e.g. 5

m auditors and 17) for which at least y fraction
of the auditors see a violation:
Im(xs) — m(xs7)| > d'(xs,%17) +
—
Or
(e ()} Panel No unfair treatments.
(Features, JEY (1, wery X, )
Predictions) Fairness Feedback

Violation  Required
threshold consensus
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Outline

Fairness Framework: Metric-Free Individual Fairness via Panels
Individually Fair Online Batch Classification

Reduction to Contextual Combinatorial Semi-Bandit
Multi-Criteria No Regret Guarantees for Accuracy, Fairness
Oracle-Efficient Algorithm
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Our Setting

@ Online classification
@ Arriving individuals:

> Possibly adversarial

» Possibly multiple arrivals each round

> Label information for positive predictions only
@ Auditing panels:

» Dynamically selected

Individually fair online batch classification: single round

2. Fairness feedback

o s fi N
K Individuals Gy, Predictions Panel rom pane!
et s t t
‘ / (e el 7'7{51, ces Xjy )
Deployed Violation  Required
oy TEAHM threshold
policy resho consensus

Yahav Bechavod (University of Pennsylvania) Individual Fairness in Online Classification

Learner updates
upon seeing:

1. Labels — iff
predicted positively.
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Our Setting

Time [11...,T]

| | |
Day:1 Day:2 Day:3

| | {
Q-rmp Q-mr D -D-my
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Individually fair online batch classification with one-sided
feedback

Algorithm 1: Individually fair online batch classification with one-sided feedback

Input: Number of rounds T, hypothesis class H;

Learner initializes 7! € AH;

fort=1,...,T do

Environment selects individuals Xt € XX, and labels yt € V¥, learner only
observes xt;

Environment selects panel of auditors (j&1,...,j5m) € J™ ;
Learner draws h' ~ 7, predicts y*' = ht(x"') for each i € [k], observes
yoiiff pii =1,

Panel reports its feedback p* :j;.tl’f.’jjm(wt,it) :

Learner suffers misclassification loss Error(h*,x*, y*) (not necessarily
observed by learner);

Learner suffers unfairness loss Unfair(rt, %%, j*);

Learner updates 71 € AH;

end
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Online Fair Batch Classification

Definition (Misclassification loss)

We define the misclassification loss as, for all m € AH, x € X, y € {0,1} as:

Error(m,%,y) := E [(°~Y(h,X,7)].
h~m
Where for all h € H, (0-1(h,%,7) := Yk, 2~ (h, (%, 7)), and
Vi€ [k] : 0071 (h, (7, 77)) = 1[h(R") # 7'].

Definition (Unfairness loss)

l__et a> 0, 0 <~ < 1. We define the unfairness loss as, for all 7 € AH, x € Xk,

1 j(mx)=(x5,x)As#I

Unfaira’V(Wa;(vJT) o= {0 otherwise

1

where x := (x1,...,xX).

v

= = e = = T
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Lagrangian Loss

Definition (Lagrangian loss)

Let C >0, p = (p', p?) € X2. We define the (C, p)-Lagrangian loss as, for all
€ AH, x€ Xk ye{01}k

Le,p(m, %,7) := Error(m,%,7) + C - [x(p") — (p?)] .

Linear in AH.
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Regret

Definition (Error regret)

We define the error regret of an algorithm A against a comparator class U C AH
to be

Regret®" (A, T, U) Z Error(m*, 3", y") — m|n Z Error(m*, X", y').
t=1

Definition (Unfairness regret)

Let « > 0, 0 <y < 1. We define the unfairness regret of an algorithm A against
a comparator class U C AH to be

T T
Regret“"™iraY( A, T, U) E Unfair®? (n*, %%, j*)— min Unfair®? (*, %, j*)
s
t—1 =1

v
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Measuring Performance

“Competing” against most accurate policy that does not violate individual
fairness.

Time [11...,T]

I | |
Day:1 Day:2 Day:3

| | |
~ -

epored .,

o

‘ v L

TEQqy : |No (a,v) —vioIationslNo (a,v) —vioIationsINo (a,y) —violations
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Measuring Performance

We wish to compare performance with the highest-performing policy that is
individually fair.

Definition ((c,y)-fair policies)

Let « >0,0<~ <1, meN\{0}. We denote the set of all (a,~)-fair policies
with respect to all of the rounds in the run of the algorithm as

Quy = {m € AH V€ [T], Ji87 jun(m %) = (v, 1)}

@ Class is only defined in hindsight - realization is over both arriving
individuals and panel members.
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Simultaneous No-Regret Guarantees

We want, simultaneously:

@ Accuracy:
Regret" (A, T, Qa,y) = o(T).
@ Fairness: _
Regretunfalr,a,’Y(A’ T, Qa,’y) = o( T)
We know:

Gillen, Jung, Kearns, Roth (2018) - If auditor’s judgements are according to a
metric, of particular parametric form (Mahalanobis), and reports all violations
- this is possible (with fast, logarithmic rate for the fairness regret).

Q: Can we still achieve simultaneous sub-linear rates under:

@ no parametric or metric assumptions?

@ auditor not reporting all violations?
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Solution Strategy

@ Construct a reduction from our setting to the contextual combinatorial
semi-bandit problem.

@ Show that, under certain conditions, the Lagrangian loss may be used to
upper bound both error and unfairness losses.

© Propose an oracle efficient algorithm by adapting Context-Semi-Bandit-FTPL
(Syrgkanis et al. 2016), which would allow invoking our reduction.
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Outline

Fairness Framework: Metric-Free Individual Fairness via Panels

Individually Fair Online Batch Classification

°
°

@ Reduction to Contextual Combinatorial Semi-Bandit

@ Multi-Criteria No Regret Guarantees for Accuracy, Fairness
°

Oracle-Efficient Algorithm
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Contextual Combinatorial Semi-Bandit

Algorithm 2: Contextual Combinatorial Semi-Bandit

Parameters: Class of predictors H, number of rounds T;
Learner deploys 7! € AH;
fort=1,..., T do
Environment selects loss vector £¢ € [0, 1]% (without revealing it to learner);
Environment selects contexts X! € X%, and reveals them to the learner;
Learner draws action at € At C {0, 1} according to 7t (where
At = {at = (h(xt1),..., h(xtK)) : Yh e H}) ;
Learner suffers linear loss (at, £*);
Learner observes ¢t iff at-l = 1:
Learner deploys 7f+1;

end
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Reduction

In describing the reduction, we use the following notations (For integers k > 2,
C>1):

(ii) h(RY) := (h(X*Y),. .., h(RE2KHACY).

C times k+2C times
: t1 2 L5 = . _
(i) Vae{p~,p~,0,1,1/2}: a:=(a,...,a), a:=(a,...,a).

Algorithm 3: Reduction to Contextual Combinatorial Semi-Bandit

Input: Contexts Xt € X¥, labels y* € {0,1}¥, hypothesis ht, pair pt € X2,
parameter C € N;

Define: Xt = (xt,pbt, pt2) € XK€yt = (74,0,1) € {0, 1}++2¢;

Construct loss vector: rt=1-7t, 1/2) € [0, 1]2k+4C,
Construct action vector:  at = (ht(X%),1 — ht(X!)) € {0, 1}2k+4C;
Output: (¢*,a%);

Yahav Bechavod (University of Pennsylvania)
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Reduction

In describing the reduction, we use the following notations (For integers k > 2,
CcC>1)

C times k+2C times
i 1 t2 _ —
(i) Vae {p**,p"2,0,1,1/2} : 3:=(a,...,a), 3:=(a...,a).
(ii) h(X') := (h(xX"1),..., h(X"2KF4C)).

Algorithm 4: Reduction to Contextual Combinatorial Semi-Bandit

Input: Contexts Xt € XX, labels y* € {0,1}X, hypothesis h*, pair pt € A2,
parameter C € N;

Define: Xt = ()_(t7ﬁt,17p_t72) € Xk+2c7}=/t = (yta(_))i) € {07 1}k+2C )

Construct loss vector: ¢t = (I —7%,1/2) € [0, 1]2K+4C;
Construct action vector: at = (ht(Xt),1 — ht(Xt)) € {0, 1}2k+4C;
Output: (¢f, a");

Yahav Bechavod (University of Pennsylvania)
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Reduction

1. Encoding unfairness loss in terms of misclassification loss, by generating a
“fake” stream of samples.

Higher Lower
predlctlon predlction

-,
— Reported

/ Panel pair
. Predictions

Deployed C Individuals C Individuals
policy Kindividuals  set label =0 Set label =

Fake stream:
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Reduction

In describing the reduction, we use the following notations (For integers k > 2,
C>1):

C times k+2C times
. i1 o _ —_—~— —_——
(Y Vae {p~,p"°,0,1,1/2} . 3:=(a,...,a), a:=(a,...,a).

(i) B(RY) = ((R1). .., A(REPHCY).

Algorithm 5: Reduction to Contextual Combinatorial Semi-Bandit

Input: Contexts Xt € XX, labels
parameter C € N;

yt € {0,1}%, hypothesis ht, pair pt € X2,
Define: Xt = (xt, ptl, pt?) € XK€ Jt = (74,0,1) € {0, 1}++2¢;
Construct loss vector: ot =(1-73, 172) € [0, 1]2k+4¢

Construct action vector:  af = (ht(Xt), 1 — ht(R*)) € {0, 1}2<+4C
Output: (¢f, a");

Yahav Bechavod (University of Pennsylvania)
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2. Handling one-sided feedback: misclassification loss manipulation:

Good Bad Good Bad
/= Accjept 0 1 7= Accjept 0 2
Reject 1 0 Reject 1 1

Manipulation is regret-preserving:

Yhe M :U(h (x,y)) =£h(x,y)+ 1]y = 0]
= Vh h € H : U(h, (x,y)) = UK, (x,y)) = £(h, (x,y)) = LK, (x,y))

Allows for moving from one-sided to bandit setting.
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Upper Bounding Lagrangian Regret

For the following theorem, we will assume the existence of an algorithm A for the
contextual combinatorial semi-bandit setting (as summarized in Algorithm 2)
whose expected regret (compared to only fixed hypotheses in H), against any
adaptively and adversarially chosen sequence of loss functions ¢* and contexts xf,
is bounded by Regret(A, T,H) < RATH.

Theorem (Upper Bounding Lagrangian Regret)

In the setting of individually fair online learning with one-sided feedback
(Algorithm 1), running A while using the sequence (at, ¢*)]_; generated by the
reduction in Algorithm 5 (when invoked every round on x*, y*, ht, pt, and C),
yields the following guarantee, for any V. C AH,

T T
Z Lcypt(ﬂ't,)_(t,yt) — erénvz Lc,pt(ﬂ'*,)_(t7 _t) < (2/( aF 4C)RA’T’H.

t=1 t=1
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Simultaneous No-Regret Guarantees

Reminder: we want, simultaneously:

@ Accuracy:
Regret® (A, T, Qo) = o(T).

@ Fairness:

Regret”"fa"r’a”(A, T,Qany) =o0(T).

Yahav Bechavod (University of Pennsylvania) Individual Fairness in Online Classification
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Upper Bounding Misclassification, Unfairness

Theorem (Upper Bounding Misclassification, Unfairness
Simultaneously)

For any € € [0, o],
-
Cez Unfair®? (r*, %%, j') + Regret® (A, T, Qa—c.+)

t=1
T

< ZLC’Pf(WtV_(ta)_/t) - min ZLC,P‘(W*v)_(tv}_/t)'
t=1

And remember that the right hand side is upper bounded by (2k +4C)RAT .
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Careful...

Theorem (Upper Bounding Misclassification, Unfairness
Simultaneously)

For any ¢ € [0, ],

-
CEZ Unfair®"(rt, %t, j*) 4 Regret™ (A, T, Qua—c 4)
=1
T T
= Le (%5 ) —  min Le pe(m*, %5, 7%).

Regret® (A, T, Qa—c,) can be negative!

— Even if Lagrangian regret is sublinear, number of fairness violations can still
be linear.

=—> We will need to carefully interpolate between the two objectives.
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Outline

Fairness Framework: Metric-Free Individual Fairness via Panels

Individually Fair Online Batch Classification

°
°

® Reduction to Contextual Combinatorial Semi-Bandit

@ Multi-Criteria No Regret Guarantees for Accuracy, Fairness
°

Oracle-Efficient Algorithm
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So Far

@ (Any) no regret algorithm for contextual combinatorial semi-bandit
= simultaneous no regret for each of accuracy, fairness.

@ Important: our reduction requires that the panel sees the predictions (not
the realization!) of the deployed policy on incoming individuals:

» Fine with exponential weights style algorithms.
» FTPL style algorithms do not explicitly maintain the distribution deployed
over base predictors every round.
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Multi-Criteria No-Regret Guarantees: Exp2 (“Expanded
Exp”)

Exp2 (Bubeck et al. 2012) is an adaptation of the classical exponential weights
algorithm for linear bandits.

@ in order to cope with the semi-bandit nature of the online setting, leverages
the linear structure of the loss functions in order to share information
regarding the observed feedback between all experts (hypotheses in ).

@ Such information sharing is then utilized in decreasing the variance in the
formed loss estimators, resulting in a regret rate that depends only
logarithmically (instead of linearly) on |#|.
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Multi-Criteria No-Regret Guarantees: Exp2 (“Expanded
Exp”)

Theorem

In the setting of individually fair online learning with one-sided feedback
(Algorithm 1), running Exp2 for contextual combinatorial semi-bandits (Algorithm
2) while using the sequence (at, ¢t)[_, generated by the reduction in Algorithm 5
(when invoked each round using X*, y*, h*, pt, and C = T%), yields the following
guarantees, for any € € [0, «], simultaneously:

© Accuracy: Regret®" (Exp2, T, Qa—cy) < O (k% T3 log |H|%)

@ Fairness: Y./, Unfair™(xt, %, jt) < O (%kg T5 log |7-L|%).

o

However, Exp2 has space and time requirements linear in T. Could be prohibitive
for large classes.
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Multi-Criteria Guarantees: Context-Semi-Bandit-FTPL

Context-Semi-Bandit-FTPL (Syrgkanis et al. 2016) is an oracle-efficient algorithm
for combinatorial bandits. It requires access to:

o (Offline) optimization oracle.

@ Pre-computed (small) separator set.

However, in our specific setting, it cannot simply be applied off the shelf.
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Multi-Criteria Guarantees: Adapting
Context-Semi-Bandit-FTPL

In order to not have runtime, memory complexity that scales with |#|,
Context-Semi-Bandit-FTPL does not explicitly maintain the deployed distribution
over H.

@ Instead, it samples a single hypothesis according to this distribution every
round, utilizing the linearity of the loss function.

@ However, for individual fairness this is problematic, as it can lead to extreme
overestimation of unfairness, if panel is queried using single hypotheses. This
is since the unfairness loss is sub-additive.

Lemma

There exist o, y,m k >0, H: X — {0,1}, x € XK, j: Xk = X2, and 7 € AH
for which, simultaneously,
Q@ E [unfair®?(h, %,j)] =1.
h~m

Q@ unfair®?(m,x,j) = 0.
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Adapting Context-Semi-Bandit-FTPL

e Potential solution: Closed-form expression for the (implicit) weights the
algorithm places on each h € H.

@ However, the weights are generally not efficiently computable in closed form
(see e.g. the discussion in Neu and Bartok 2013).

@ Our solution: Instead, we will resample the deployed hypothesis every round.

@ Problem: In order to use adversarial online learning algorithms, the realized
randomness of the learner cannot be revealed to the adversary before it picks
its loss vector.

@ In general: adversary can tailor the losses to the realized randomness and
force linear regret.
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Adapting Context-Semi-Bandit-FTPL

Algorithm 4: Utilization of Context-Semi-Bandit-FTPL

Parameters: Class of predictors #H, number of rounds T, separator set S,
parameters w, L;

Initialize Context-Semi-Bandit-FTPL-With-Resampling(S,w, L);

Learner deploys 7! € AH according to
Context-Semi-Bandit-FTPL-With-Resampling;

fort=1,...,T do

Environment selects individuals Xt € X%, and labels yt € V¥, learner only
observes X!;

Environment selects panel of auditors (j©1.....j5™) € J™;

(7, ht) = Context-Semi-Bandit-FTPL-With-Resampling(%*, w, L);

Learner predicts yt" = ht(x"") for each i € [k], observes y* iff & = 1;

Panel reports its feedback p* :J:ﬁ’fl'.tz.m(ﬁt,if);

(¢t,at) = Reduction(x*, 7t, At pt, C);

Update Context-Semi-Bandit-F TPL-With-Resampling with (£*,a");

Learner suffers misclassification loss Error(ht,xt, 7t) (not necessarily
observed by learner);

Learner suffers unfairness loss Unfair(#t, Xt, jt);

Learner deploys 7t*! € AH according to
Context-Semi-Bandit-FTPL-With-Resampling;

end
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Adapting Context-Semi-Bandit-FTPL

o Potential solution: Closed-form expression for the (implicit) weights the
algorithm places on each h € H.

@ The weights are generally not efficiently computable in closed form (see e.g.
the discussion in Neu and Bartok 2013).

@ Our solution: Instead, we will resample the deployed hypothesis every round.

@ Problem: In order to use adversarial online learning algorithms, the realized
randomness of the learner cannot be revealed to the adversary before it picks
its loss vector.

@ In general: adversary can “tailor” its losses to the realized randomness and
force linear regret.

@ However, since our “adversary” is restricted to act according to the (fixed)
implicit distance functions of the auditors in the panel, it cannot really
adversarially adapt to the realized estimate: with high probability, the fairness
loss for the realized (estimated) policy and the underlying distribution is close.
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Oracle-Efficient Algorithm:
Context-Semi-Bandit-FTPL-With-Resampling

Theorem

In the setting of individually fair online learning with one-sided feedback
(Algorithm 1), running Context-Semi-Bandit-FTPL-With-Resampling for
contextual combinatorial semi-bandit (Algorithm 5) as specified in Algorithm 4,
with R = T, and using the sequence ({*,a')]_, generated by the reduction in
Algorithm 5 (when invoked on each round using x*, yt, ht, pt, and C = T ),
yields, with probability 1 — ¢, the following guarantees, for any € € [0, o],
simultaneously:

© Accuracy: Regret®(CSB-FTPL-WR, T, Qu_.~) < O (k%ﬁ T3 log |H|%>.

@ Fairness: 2;1 Unfair®7 (7%, %%, 1) < O (%k%s% T log |H|%).
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Overview of Results

A 3
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Yahav Bechavod (University of Pennsylvania)

Individual Fairness in Online Classification

August 19, 2023



Limitations

@ Exp2 prohibitive for large hypothesis classes.
o Context-Semi-Bandit-FTPL-WR:

> Small separator sets only known for specific classes (conjunctions, disjunctions,
parities, decision lists, discretized linear classifiers).
» Our implementation requires O(T?) calls to the (offline) optimization oracle.

We “inherit” some of the limitations from the contextual bandit literature.
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Rich Subgroup Fairness

o Kearns et al. 2018, Hébert-Johnson et al. 2018. Many follow up works.

@ A "middleground” between group and individual fairness - equalizing across a
pre-defined set of (potentially) exponentially many, possibly overlapping,
groups in the population.

@ Allows for significantly stronger guarantees for individuals than simple group
notions.
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Individual Fairness and Rich Subgroup Fairness

@ Individual fairness sits on one extreme of subgroup fairness, treating each
individual as a subgroup.

@ However, individual fairness does not equalize some statistic over all
individuals, but rather according to a very specific structure - given by an
extra component, specifying who is similar.

o Individual fairness gives direct influence to people's preferences in forming the
fairness definition.

@ However, harder to elicit. Could trigger larger tension with accuracy if
similarity preferences are not well-aligned with labels.
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Takeaways

@ Meaningful fairness guarantees to individuals, while minimizing surrounding
assumptions, regarding:
> The availability or form of similarity metrics
» Data generation process
» The observable feedback for made decisions
@ Fairness auditing framework which can handle multiple auditors with
(possibly) conflicting opinions
» Possible to algorithmically change the required consensus for a fairness
violation and explore the frontier.

@ Possible to achieve simultaneous no regret for accuracy and individual
fairness, under
> No parametric (or even metric) assumptions on similarity judgements

» Adversarial arrivals
» One-sided label feedback
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Future Directions

@ Is it possible to achieve faster rates? The regret lower bound for
combinatorial bandits is Q(ky/ T log |H]).

e Can we give an oracle efficient algorithm in the general case (without
requiring small separators)?
@ Relaxing some of the assumptions:
» What if only contexts are adversarial, but labels are selected from a
distribution given the context?

» What if panels are selected stochastically?
» Parametric assumptions?

o Faster algorithms?

Yahav Bechavod (University of Pennsylvania) Individual Fairness in Online Classification August 19, 2023



